We can change a perfect square trinomial into the square of a binomial

<u>Example 1</u>	<u>Example 2</u>
$x^2 + 10x + 25$	$x^2 - 18x + 81$
(x+5)(x+5)	(x-9)(x-9)
$(x+5)^2$	$(x-9)^2$

Let's create some perfect square trinomials. We'll use the middle term to find the missing third term. This process is called **<u>completing the square</u>**.

Example 3

 $x^2 + 16x + \blacksquare$

Step 1- Find the coefficient of the middle term The middle term is 16x, so the coefficient is 16.

Step 2- Divide that number by 2 $16 \div 2 = 8$

Step 3- Square that number and make the result the third term (in for the ■). We made a perfect square trinomial!

 $(8)^2 = 64$, so we will change the **I** to 64.

 $x^2 + 16x + \blacksquare \longrightarrow x^2 + 16x + 64$

Step 4- Change the perfect square trinomial into the square of a binomial

$$x^{2} + 16x + 64$$

(x + 8)(x + 8)
(x + 8)²

Do you notice that the second number of the binomial square is the same as the number we obtained in Step 2?

Example 4

 $x^2 - 11x + \blacksquare$

Step 1- Find the coefficient of the middle term The middle term is 11x, so the coefficient is -11.

Step 2- Divide that number by 2

$$-11 \div 2 = -\frac{11}{2}$$

Step 3- Square that number and make the result the third term (in for the ■). We made a perfect square trinomial!

$$\left(-\frac{11}{2}\right)^2 = \frac{121}{4}$$
, so we will change the \blacksquare to $\frac{121}{4}$.
 $x^2 - 11x + \blacksquare \longrightarrow x^2 - 11x + \frac{121}{4}$

Step 4- Change the perfect square trinomial into the square of a binomial

$$x^{2} - 11x + \frac{121}{4}$$
$$\left(x - \frac{11}{2}\right)\left(x - \frac{11}{2}\right)$$
$$\left(x - \frac{11}{2}\right)^{2}$$

Do you notice that the second number of the binomial square is the same as the number we obtained in Step 2?